搜索
学术聚焦
当前位置: 首页 > 学术聚焦 > 正文

自动化学院:阿尔伯塔大学的过程控制教育

作者:自动化学院 来源:自动化学院 责任编辑:   终审: 点击: 日期:2014-04-16

题目:阿尔伯塔大学的过程控制教育(Process Control Education in University of Alberta)

主讲人:黄彪教授(加拿大阿尔伯塔大学教授,金沙集团1862cc泰山学者海外特聘专家)

时 间:2014年4月17日下午1:30

地 点:1号教学楼303

内容简介:

Operation of modern process industries is both a costly and technically complex business. It is of practical interest to investigate novel techniques to improve profitability while diligently maintaining environmental compliance. One of the proven approaches for finding solutions to achieve this objective is to develop innovative strategies for advanced monitoring and control of plant operations. Development and implementation of advanced monitoring and control techniques require real-time inference of critical process variables. However, on-line acquisition of such variables may involve difficulties due to the inadequacy of measurement techniques or low reliability of measuring devices. To overcome the shortcomings of traditional instrumentation, predictive inference has been designed to infer critical variables from real-time measurable secondary process variables. Predictive inference has become an emerging technology that has shown great potential in filling in the technological and financial gaps with little or no capital cost required. However, each inference is unique and there is no universal solution to the predictive inference problems. Hence, the novelty is reflected essentially in the solution strategies developed as each application poses its own challenges. Development of predictive inference mainly consists of four steps: 1) modeling, 2) prediction, 3) implementation and 4) monitoring. The main challenges are uncertainties involved in the development of predictive inference including uncertainty in data quality, in model parameters, in reference data and in operating conditions. These challenges call for establishment of a rigorous mathematical framework and practical rules. In this presentation, a general introduction to the main steps involved in predictive inference, mathematical principles behind robust modeling and inference, approaches to dealing with uncertainties and practical implementation is provided.

主讲人简介:

2004-2006年任加拿大化学工程师协会系统与控制委员会主席;

2005-2013年历任包括美国控制会议,国际自控联盟等多个会议组织委员会的委员,分委会主席,主席等;

2011年起中国过程控制专业委员会委员;

2011年起任加拿大国家自然科学与工程基金委员会油沙过程控制工业研究首席科学家

2012年起国际自控联化工过程控制专业委员会委员;

2013年起加拿大阿尔伯塔省创新及未来技术过程控制工业首席科学家;

现任国际自控联控制工程实践杂志副总编、过程控制杂志和加拿大化工杂志副主编。

  • 崂山校区:

    山东省青岛市松岭路99号

  • 四方校区:

    山东省青岛市郑州路53号

  • 中德国际合作区(中德校区):

    山东省青岛市西海岸新区小清河路6号

  • 高密校区:

    山东省高密市杏坛西街1号

  • 济南校区:

    山东省济南市文化东路80号

  • 教科产融合学院(淄博教科产融合基地):

    山东省淄博市周村区联通路(西段)5188号

   鲁ICP备05001948号-1   鲁公网安备 37021202000007号   青岛市互联网违法信息举报中心
©2023 金沙集团1862cc成色(中国)有限公司-搜狗百科